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Abstract

While harms of allocation have been increasingly studied

as part of the subfield of algorithmic fairness, harms of

representation have received considerably less attention. In

this paper, we formalize two notions of stereotyping and

show how they manifest in later allocative harms within

the machine learning pipeline. We also propose mitigation

strategies and demonstrate their effectiveness on synthetic

datasets.

1 Introduction

In the rapidly growing area of fairness, accountability
and transparency in machine learning, one of the fun-
damental questions is the problem of discrimination:
are there disparities between social groups in the way
decisions are made? This question has been typically
studied as a harm of allocation: a problem in the way a
learned model allocates decisions to entities. In a talk
at NIPS 2017[13], Kate Crawford proposed studying in-
stead harms of representation: the ways in which in-
dividuals might be represented differently in a feature
space even before training a model. For example, she
describes the representation of Black people as inher-
ently more criminal as a harm whether or not hiring
decisions are made based on that representation. Sim-
ilarly, the work that has been done showing that word
embeddings contain gender bias [4, 8, 33] identifies a
harm of representation.

To study representational harm and how to mini-
mize it, we must quantify it. Friedler et al. [18] provide
a framework that explicitly calls out the distinction be-
tween the construct space, the desired representation of
individuals, and the observed space, the measured at-
tributes. They then propose measures of distortion be-
tween these spaces as a way to measure structural bias
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in representation.
Harms of representation come in many different

forms. Perhaps the most ubiquitous one is stereotyping
– the tendency to assign characteristics to all members
of a group based on stereotypical features shared by a
few. In this paper, we focus on quantifying stereotyping
as a form of representation distortion. Our goal is to
apply the general framework of Friedler et al. in this
specific context, in order to design measures that are
specifically sensitive to stereotyping effects.

1.1 Our Contributions. Our main contributions in
this paper are:

• A formal mechanism for stereotyping as a func-
tion from construct to observed space. This mech-
anism can be interpreted probabilistically or geo-
metrically: in its former form it aligns with litera-
ture in psychology that explores how people form
stereotypes.

• A demonstration of the effects of stereotyping in
model building.

• A proposal for mitigating the effects of stereotyping
– in effect an attempt to “invert” stereotyping as
defined above – and experimental evidence demon-
strating its effectiveness.

2 Literature review

In psychology, a stereotype is defined as an over-
generalized belief about a particular group or class of
people [10]. Stereotypes can be positive: Asians are
good at math, or negative: African-American names are
more associated with criminal backgrounds [35]; Stereo-
types are not limited to just racial groups and they
can change over time [25]. One of the central purposes
served by applying stereotypes is to simplify our social
world as they reduce the amount of information process-
ing we have to do when faced with situations similar to
our past experiences [20]. Though stereotypes can be
seen as helping people respond to different social situa-
tions more promptly, they make us overlook individual
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differences; this can lead to prejudice [34].
The approach we take in studying stereotypes is

inspired by the literature on social cognition. This ap-
proach defines stereotypes as beliefs about the charac-
teristics, attributes, and behaviors of members of cer-
tain groups and views stereotypic thinking as a mech-
anism which serves a variety of cognitive and motiva-
tional processes e.g. simplifying information processing
to save cognitive resources [20]. Various models have
been proposed and used to represent stereotyping. In
the prototype model, people store and use an abstrac-
tion of stereotyped group’s typical features and judge
the the said group members by their similarity to this
prototype [9]. In the exemplar model, people use spe-
cific, real world individuals as representatives for the
groups. As a group might have a number of exemplars;
which one comes to mind when the stereotyping process
is being activated depends on the context and situation
in which the encounter with the stereotyped group mem-
ber has occurred [32]. In associative networks, stereo-
types are considered as linked attributes which are ex-
tensively interconnected [27]. In the schemas model,
stereotypes are thought of as highly generalized beliefs
about group members with no specific abstraction or
exemplar for an attribute tied with such beliefs. Fi-
nally, in the representativeness model, stereotyping is
defined as distorted perception of the relative frequency
of a type in the stereotyped group compared to that of
a base group [5]. This definition is based on the rep-
resentativeness heuristic due to Kahnemann and Tver-
sky [22, 23], a similarity heuristic that people rely on
to judge the likelihood of uncertain events, instead of
following the principles of probability theory [36].

Stereotyping also makes an appearance in the eco-
nomic literature on statistical discrimination [2, 1]. Sta-
tistical discrimination describes the process where em-
ployers, unable to perfectly assess worker’s productivity
at the time of hiring, use information such as sex and
race as proxies for the expected productivity. This is
estimated by the employer’s prior knowledge of the av-
erage productivity of the group the worker belongs to.
In other words, the stereotyping mechanism described
here is the replacement of individual scores by a sin-
gle aggregated score over a group, where the score is
perceived as relevant for the individual. This literature
views stereotyping as a rational response to insufficient
information about individuals, rather than as a choice
of representation that might distort outcomes.

The literature on algorithmic fairness has for the
most part focused on bias caused by skew in training
data distributions and the training process itself, and
has quantified the bias in terms of fairness measures
that are typically outcome-based (see, e.g., [7, 19, 39, 24]

and surveys [29, 37]). Some of the research in this area
has taken a representational, preprocessing approach
to reversing training data skew [17, 26, 40, 6, 16]
by changing the inputs so that a classifier finds fair
outcomes. In the context of unsupervised learning,
recent work on fair clustering[12, 31, 3] and PCA[30, 28]
seeks to generate a modified representation of the input
points so that the new representation (clustering or
reduced dimension) satisfies a notion of “balance” with
respect to groups. In all of these, the goal is to use
representation to guide (fair) learning, rather than look
at skew in the representation itself.

There have been a few works that look at bias that
emerges from the representation process, most notably
when looking at learned representations that come from
word-vector embeddings[4, 8, 33, 14]. The goal of these
methods is to show how biases in language are preserved
after doing such an embedding.

3 Modeling Stereotypes

We now propose mechanisms by which stereotyping
might occur. We first present a novel geometric ap-
proach to stereotyping (and a variant on it), and then
review a probabilistic approach first proposed in [5].
Finally, we show that these different perspectives on
stereotyping can be unified in a common algebraic
framework. Each mechanism will have an associated
stereotyping measure, with larger values indicating a
greater degree of stereotyping.

3.1 Stereotyping via Exemplars. Stereotyping
via exemplars refers to generalizing features attributed
to a small subset of a group, called stereotypic exem-
plars, to all of its members. In the simplest version
of stereotyping by exemplars, a single exemplar pulls
points towards itself, so that in the observed represen-
tation, points from one group are perceived to be closer
to the exemplar (and thus closer in feature space) than
they actually are.

Figure 1: An example of stereotyping: points are drawn
to the exemplar

This mechanism is illustrated in Figure 1. The
left subfigure represents the original representation in
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the construct space with two groups colored in red
and black. Once an exemplar (the larger red point) is
chosen, the observation process associates other point
more closely with it – this is effectively achieved by
having the red points mapped closer to the exemplar,
as we see in the right subfigure.

Formally, we model this mechanism as follows. Let
the minority (protected) group point set be denoted by
P and the majority (unprotected) group point set be
U . Fix an exemplar c ∈ P . Then each point p ∈ P is
shifted as follows:

(3.1) pα = (1− α)p+ αc

The term α is the measure of stereotyping. Note that
if α = 0, no stereotyping happens, and if α = 1, all
points are collapsed to the exemplar. Points in U are
not shifted at all.

Stereotyping Using Features. Stereotyping
might happen only along some dimensions of the data,
and not others. For example, we might stereotype all
Asians as having higher aptitude for math based on an
exemplar, but we might not borrow other attributes
of the exemplar (say proficiency in sports, or crafting
skills) and extend them also to all Asian people.
Formally, this amounts to performing stereotyping in
a subspace of relevant features. Assume that only k
of d features are influenced by stereotyping. Then we
can write the mechanism for shifting a point p ∈ P as
before as

(3.2) pα =

(
(1− α)Ik 0

0 Id−k

)
p+

(
αIk 0
0 0

)
c

where we have reordered features so that the stereo-
typed ones are the first k.

3.2 Stereotyping via Representativeness. We
now turn to a probabilistic mechanism for stereotyping
first proposed by Bordalo et al[5].

For ease of exposition, imagine a data representa-
tion consisting of single feature that takes T distinct
values that we call “types”. For example, the feature
might be age and the types might be specific age ranges.
Let G be a group of individuals. The representativeness
of a type t ∈ T for group G is defined as the ratio of
conditional probability of individuals in G having value
t to the corresponding probability for the complement
G:

R(t, G,G) =
Pr[t|G]

Pr[t|G]

Intuitively, the representativeness measures how distinc-
tive t is at distinguishing groups. The larger it is, the
more likely it is that the presence of t predicts group
membership.

Stereotyping now occurs by amplifying perceived
probabilities based on representativeness. Formally, the
distorted perceived probabilities are
(3.3)

st

Pr(t|G) = Pr(t|G)× ht(R(t, G,G))∑
s∈T Pr[s|G]hs(R(s,G,G))

Where ht : RT+ → R+ is weakly increasing in t and
weakly decreasing in the other T − 1 types.

For concreteness (and as suggested by Bordalo et
al) let us assume that h(·) takes the form ht(x) = xρ.
Here ρ > 1 is again the measure of stereotyping. The
larger it is, the more representativeness influences the
perceived probabilities.

3.3 A unified view of stereotyping. While the ge-
ometric and probabilistic mechanisms described above
look quite different on the surface, they are actually ex-
amples of a more general linear framework for thinking
about stereotyping. For a point p ∈ P , let v(p) : P → F
be an invertible transformation of p into a feature space
F . We will define a generalized stereotyping trans-
form parametrized by matrices A,B as the transfor-
mation p′ = v−1(Av(p) + B) or more conveniently
v(p′) = Av(p) + B Note that setting v to the identity
mapping already recovers the two geometric transfor-
mations via equations (3.1),(3.2).

Consider the probabilistic transform defined by
(3.3). As suggested, let us set h(x) = xρ. Further,
let us define λ(t) = Pr(t | G)/Pr(t | G). We can now
rewrite (3.3).

(3.4) p′t|G =
pt|Gλ(t)ρ∑
s ps|Gλ(s)ρ

By assumption, probabilities in the majority group
G are not modified, which implies that p′

t|G = pt|G.

Dividing both sides of (3.4) by the left and right sides
of this equality, we get

λ′(t) =
λ(t)1+ρ∑
s ps|Gλ(s)ρ

(3.5)

which after taking logs yields

lnλ′(t) = (1 + ρ) lnλ(t)− ln
∑
s

ps|Gλ(s)ρ(3.6)

Setting v(p) = ln p and noting that lnλ(t) =
ln pt|G − ln pt|G where pt|G is fixed, we can recover the
same linear relationship as before.

While we can unify the different mechanisms of
stereotyping mathematically, we observe that the ac-
tual processes by which these mechanisms might modify
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data are different. Representativeness is a form of cog-
nitive bias that would manifest itself in data collection:
for example in predictive policing, officers that might
stereotype potential criminals based on race are more
likely to observe (and therefore collect data) on crimes
perpetuated by minorities. Stereotyping via exemplars
(and features) might manifest itself at the time of fea-
ture selection: by omitting key differentiating features
in the representation, points might end up appearing
closer than they actually are.

4 Harms of Stereotyping

While we believe that stereotypes are harms indepen-
dent of their implications for the machine learning pro-
cess, the use of stereotyped data representations as
training data additionally leads to disparities in out-
comes by group. In this section, we demonstrate this
analytically for Naive Bayes classification, linear regres-
sion, and clustering; thus demonstrating these harms
in classification, regression, and unsupervised settings.
For Naive Bayes classification, we adopt the probabilis-
tic interpretation of stereotyping, while the other two
are studied under the geometric interpretation.

4.1 Naive Bayes Classifier. For an arbitrary input
X, Bayes’ rule states that the probability of holding
a class label Ck, 1 ≤ k ≤ m given X is: Pr[Ck|X] =
Pr[X|Ck] Pr[Ck]

Pr[X] The goal in classification is to predict

the most likely label for a given input. Naive Bayes
classification makes the assumption that conditioned
on the class label, these features are independent of
each other, yielding the following predictive rule. ŷ =
arg maxk Pr[Ck]

∏n
i=1 Pr[xi|Ck] where xi, 1 ≤ i ≤ n, is a

single feature of X. In the presence of stereotyping such
an assumption might have an undesired impact on the
classification results. Consider a dataset with sensitive
attribute A, e.g., being Asian, and an attributes Dp

relevant to known stereotypes for A, e.g. being good
at math. Let’s assume Dp is positively correlated with
being Asian. In this setting, if the data gathering
process is susceptible to this type of stereotyping, the
Naive Bayes formulation would turn into:

(4.7) ŷ = arg max
k

Pr[Ck]
n−3∏
i=1

Pr[xi|Ck]×

Pr[Dp|A,Ck] Pr[A|Ck]

where Pr[Dp|Ck] is replaced by Pr[Dp|A,Ck]. Ac-
cording to the probabilistic interpretation of stereo-
typing [5], the perceived probability Pr[Dp|A] for the
target group could be different from its actual value:
Prst[Dp|A,Ck] ≥ Pr[Dp|A,Ck] which can influence the

classification results. Indeed, the degree of difference is
related directly to the representativeness as a function
of the ratio Prst[Dp|A,Ck]/Pr[Dp|A,Ck].

This transition – from Pr[Dp|Ck] to Pr[Dp|A,Ck]
is key to understanding stereotyping in this context.
In other words, the point of a predictive tool is that
it uses “other” features other than the class label to
determine the probabilities for desirable attributes like
Dp. Alternatively, we can think of Pr[Dp|A,Ck] as
reflecting a process by which the variable A affects
the data used to compute the conditional probability,
either by removing data that does not have A or by
overweighting data that does.

4.2 Linear Regression. In linear regression, we are
given points X = x1, . . . , xn ∈ Rd and corresponding
labels y1, . . . , yn ∈ R. The goal is to find a vector of
parameters β such that y = Xβ+ε. It is well known that
the least-squares solution to this regression is given by
β = (X>X)−1X>y. and our goal is to understand how
perturbing the input X (via stereotyping) will change
the coefficients1.

We will consider a very simple form of perturbation,
where only a single coordinate s is perturbed while the
rest (including the dependent variable y) stay fixed.
Assume that the data matrix X (in which each point

is a row) is organized as

(
Q
P

)
where Q is the set of

all majority group points and P consists of all minority
group points. Let c be the exemplar that points are
pulled towards (in dimension s). We can then write the
perturbation as

X ′ = X + α(Ξc∗> − IrXIs)

where Ξ is a n× 1 vector with values of 1 for minority
data points and zeros for majority ones and c∗ is a vector
of all zeros except in the sth position, where its value
is cs. Ir is an n × n diagonal matrix with values of
1 for rows in X representing minority data points and
zeros everywhere else; Is is a d×d matrix where its only
non-zero element, which is 1, is at row and column s.

For a general perturbation of the form X ′ = X + ∆
the coefficients in β are updated to:

(4.8) β′ = [(X + ∆)>(X + ∆)]−1(X + ∆)>y

1There is an extensive literature on the stability of linear
regression to random perturbations of the input[11]; the behavior
of the coefficients is well understood for example when the

inputs are perturbed using Gaussian noise. In our setting, the
perturbations are not random and are structured in a specific
way, and thus the prior forms of analysis, and even more recent

work that looks at other forms of structured perturbations[15]
appear to not apply directly.
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The key term in the right hand side is the inverse, which
can be written in general form as [X>X + (∆>∆ +
X>∆ + ∆>X)]−1. This is asking for the inverse of a
perturbation of a given matrix, for which we can use
the famous Woodbury formula[38]:

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)V A−1)

Let the number of rows in P (the number of
minority points) be m and µ be the centroid of the
points in P . We can then write

X ′>X ′ =

X>X + α(mµc∗> − P>PIs) + α(mc∗µ> − IsP>P )

−mα2(c∗µ>Is + Isµc
∗> + c∗c∗>) + α2IsP

>PIs

Therefore, the update to X>X consists of two of
rank-1 updates: X ′>X ′ = X>X + wu> + uw> where:

wi =

{
α(mcµs − ‖P>s ‖2) +

mα2(c2−2cµs)+α2‖P>
s ‖

2

2 , if i = s

α(mcµi − P>i · P>s ), otherwise

and u is a basis vector with a 1 in dimension s. Setting

Ud×2 =
(
w u

)
, V2×d =

(
u
w

)
, C = I2 and embedding

these matrices in the Woodbury formula yields
(4.9)
β′ = (X>X)−1X ′>Y︸ ︷︷ ︸

p1

− (X>X)−1M(X>X)−1X ′>Y︸ ︷︷ ︸
p2

The amount of perturbation is controlled by α. If we
split Equation 4.9 into two parts as illustrated, the
values in part p1 change linearly in α because of the
linear dependence on X ′. However, each element in M
is a quadratic function of α. Therefore, the values in
part p2, change quadratically when α is increased.

4.3 Clustering. Unlike in the previous two cases, we
will not present a formal analysis of how clustering
is affected by stereotyping, because clustering (and
especially k-means) is a global objective where it is
often difficult to predict how perturbations will affect
the outcome. Rather, we will demonstrate empirically
the effect of stereotyping on clustering in Section 6.

However, we argue qualitatively here for why clus-
tering will be affected by stereotyping. The effect of
moving points closer to an arbitrarily chosen exemplar,
especially if this exemplar is not the mean of the set of
minority points, has the effect of shifting and concen-
trating clusters to make them look more homogeneous
with respect to group identity. But if the exemplar is an
outlier, then the cost of the clustering will increase: for
k-means this increase in cost is related both to the dis-
tance between the exemplar and the cluster mean and
the number of points that are moved.

5 Mitigating the Effects of Stereotyping

Since it is impossible to access construct space, in order
to mitigate the unwanted influences of stereotyping on
machine learning pipeline, we need to make assumptions
about data in the ideal world. One useful assumption to
make is based on We’re All Equal worldview [18], where
the idea is that in the ideal world, different groups look
essentially the same. Though such assumption might
not hold true in every possible scenario (e.g. women
are on average shorter than men), it implicitly appears
in much of literature on statistical discrimination. This
motivates us to adopt WAE as an appropriate axiom
in our work. Let’s consider two social groups in a
hypothetical dataset: minority and majority. The
minority group is the one being stereotyped in the
mapping from construct to observed space. Based on
the WAE worldview, we assume the two groups are
generated by same distribution which we can estimate,
by looking at the majority group in the observed space.
Therefore, the goal is to recover the true representation
of the minority group in the observed space, based on
majority group.

5.1 Mitigation of exemplar-based stereotyping.
Recall that in landmark-based stereotyping, a landmark
c is fixed first, as well as a measure of stereotyping
α. Then each point in the minority group is pulled
towards the landmark resulting in a new point pα. Let
the resulting mean of the modified points be µα. Using
equation (3.1) and noting that the stereotyping process
is linear, we can write

(5.10) µα = (1− α)µm + αc

where µm is the mean of all the points in the
minority group. Our goal is now to determine the values
of α and c so that we can reconstruct the original points.
We will invoke the WAE assumption by assuming that
the mean µm is close to the mean µM of the majority
group: specifically, that ‖µm − µM‖ ≤ ε.

Our goal is to determine candidates for c, α. (5.10)
tells us that any feasible exemplar c must lie on the line
between µα and µm. Since by assumption µm lies in a
ball of radius ε around µM (denoted by Bε(µM )), the
feasible region for c is a cone with apex at µα such that
the surface of its complementary cone is tangent to the
ball around µM . Let ‖µα − µM‖ = d, and fix a point
c. Then c is a feasible exemplar if the angle θ made by
c−µα with the vector µα−µm is such that sin θ ≤ ε/d.
We denote the set of such vectors by Cµα,µM (ε) and will
drop the subscripts for notational ease.

We have assumed that the exemplar is a point in P ,
so the set of feasible exemplars can be written as P ∩
C(ε). For each such c the set of possible locations for µm
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is a line segment resulting from the intersection of the
line supporting the segment µαc and Bε(µM ). For each
candidate choice of µm on this segment we can compute
α using (5.10). We will seek the smallest possible
α – this represents the most conservative measure of
stereotyping that is consistent with the observed data.
It is easy to see that this minimum is achieved by the
endpoint of the line segment closest to µα and can be
computed easily.

Figure 2: How we compute candidate c, α values

We now can associate a value of α with each c ∈ P ∩
C(ε). We take the pair (c, α) such that α is minimized.
This represents the most conservative reconstruction
that is consistent with the WAE assumption and the
observed data. We summarize this process as follows:

1. Compute the set P ∩ C(ε) by verifying the angle test
for each point of P .

2. For each candidate c in this set, compute its associated
value of α.

3. Return the pair (c, α) that minimizes α.

5.1.1 Mitigating stereotyping with respect to
features. The process above captures stereotyping
with respect to exemplar points. We now consider the
case of mitigating stereotypes that are limited to some
features. As before, we can exploit the linearity of the
perturbation (3.2) and the same idea as in the previous
subsection to observe that the means µα, µm satisfy the
same relationship.

µα =

(
(1− α)Ik 0

0 Id−k

)
µm +

(
αIk 0
0 0

)
c

This reduces to a k-dimensional version of the full
stereotyping problem described above.

5.2 Mitigating Representativeness. We intro-
duce the WAE modeling assumption: we assume that
prior to stereotyping, the probabilities of types are very
similar between majority and minority groups. For-
mally, we will express this condition as 1 − ε ≤ λ(t) ≤
1 + ε where ε is a parameter that controls the degree to
which the distributions are similar. Note that this as-
sumption implies that the Kullback-Leibler divergence
between the two conditional distributions is at most ε.

This follows from the fact that the KL-divergence can
be written as dKL(DG ,DG) =

∑
t Pr(t|G) lnλ(t). Note

that
∑
s ps|Gλ(s)ρ is a convex combination of the quan-

tities {λρ(s)}. It will be convenient to express this sum
as eγρ where eγ ∈ [1− ε, 1 + ε]. Setting δt = lnλ(t), we
note that by the standard approximation of ln(1 + x),
|δt| ≤ ε.

We can now substitute these bounds on λ(t) into
(3.5), yielding lnλ′(t) = (1 + ρ)δt − γρ = δt + ρ(δt − γt)
where |δt|, |γt| ≤ ε. Solving for ρ yields ρ = lnλ′(t)−δt

δt−γ .
There is one such equation for ρ for each value of t. The
terms δt and γ are unknown (since they arise from the
(unknown) distribution of types prior to stereotyping).
However, we can use the bounds on these terms to
provide bounds on the value of ρ.

The minimum value of ρ implied by any of the
equations can be determined by setting δt to its largest

value and γ to its smallest. This yields ρ = lnλ′(t)−ε
2ε .

Note that ρ can grow without bound, which implies
that each equation yields a half-infinite range of possible
values of ρ. Taking the intersection of all these ranges we

conclude that ρ must lie in the range [ lnmaxλ′(t)−ε
2ε ,∞].

Each value of ρ in this range is a candidate measure
of stereotyping and can be used to reconstruct the
original probabilities p(t|G). Specifically, it is easy
to see that λ(t) is proportional to λ′(t)1/ρ, and since
we can compute p(t|G) directly we can obtain p(t|G).
Interestingly, if we now compute the KL-divergence
between DG and DG, it is a monotonically decreasing
function of ρ. In other words, the smallest feasible value
of ρ given above is consistent with the WAE assumption
and is also the most conservative choice.

Summarizing, our procedure is:

1. Compute λ′(t) for all types t.

2. Set ρ = lnmaxλ′(t)−ε
2ε

3. Set pt = λ′(t)1/ρ.

4. Set p̃(t|G) = pt∑
t pt

. Return {p(t|G)}.

6 Experiments

In this section, we provide an empirical assessment for
harms of stereotyping to Naive Bayes classification, lin-
ear regression and clustering, using synthetic datasets.
Also, for each one of these problems, we demonstrate
the effectiveness of our mitigation methods.

6.1 Naive Bayes. In order to study the impact
of stereotyping via representativeness we consider a
synthetic dataset that allows us to manipulate the
extent of stereotyping in the data and note its effect
on a Naive Bayes classifier. The synthetic data contains
three binary attributes and a class label: 1. the sensitive
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attribute which is assigned randomly and specifies if
an individual is Asian or not; 2. a randomly assigned
attribute that has no correlation with the class label
or sensitive attribute; 3. an attribute indicating if the
individual is good at math, which contributes positively
to receiving the desired classification; and 4. a class label
indicating if the individual is selected for a job interview.
2000 instances are generated according to this procedure
with a 50:50 training to test split ratio.

Stereotyping via representativeness can be thought
of as amplifying disparities that already exist between
target and base subgroups. The extent of these dispar-
ities is measured by λ(t), and we assume that λ(t) > 1
for the type “good at math” with respect to the Asian
subgroup. In order to simulate a stereotyped dataset,
first we fix λ(t) by assigning positive values to “good at
math” for Asians, with a higher probability compared
to non-Asians. Then, we gradually increase the posi-
tive correlation between being Asian and the attribute
“good at math.” Specifically, the integer value of ρ is
increased from 1 to 10 where

(6.11) p′t|G =
pt|Gλ(t)ρ∑
s ps|Gλ(s)ρ

given that λ(t) = Pr(t | G)/Pr(t | G) and G and G
denote Asian and non-Asian groups respectively.

The results are shown in Figure 3. As illustrated in
Figure 3a, by boosting the representativeness of being
“good at math,” the number of selected Asians increase
while no difference is observed in the other group’s
results. These results hold over different values of λ(t).
Figure 3b shows that the effects of stereotyping on the
Asian subgroup’s results are significantly reduced by
applying the representativeness mitigation solution. We
should note there is a possibility for large values of λ(t)
and ρ, to saturate the probability of type t for the target
group, e.g. λ = 1.5, ρ = 10 in Figure 3b. In such cases,
since the stereotyped probabilities for the other types
go down to zero, our mitigation method would not be
able to retrieve the original probabilities.

6.2 Linear Regression. In this experiment, we
study the effects of stereotyping under the geometric
interpretation on linear regression. We again consider
this on a synthetic dataset so that we can manipulate
the extent of the stereotyping. The dataset contains
four features: the first is a uniform randomly assigned
binary sensitive attribute with values privileged and un-
privileged; the second, third, and fourth features are nu-
merical values between 0 and 1 assigned via a uniform
distribution; and the dependent variable is a linear com-
bination of the third and fourth attributes with noise

(a) Number of selected Asians

for different values of λ and ρ

(b) Effects of mitigation on the

number of selected Asians

Figure 3: Results of NB classification as the Asian sub-
group’s representative type “good at math” is boosted.

−0.1 ≤ ε ≤ 0.1 added, i.e.:

(6.12) y = −x3 + 2x4 + ε.

2000 instances are generated according to this proce-
dure, and a 50:50 training to test split ratio is used.

We assume higher values for y are desired by
individuals. In this experiment, we pick the individual
with the lowest value for its dependent variable y as
the exemplar, and modify values x2, x3, and x4 for
individuals from the unprivileged group so that the
distance between those individuals and the exemplar
is decreased according to parameter 0 < α < 1 i.e. if
α = 0 the values don’t change and if α = 1 the values for
x2, x3, and x4 are the same as for the exemplar point.

The results of gradually increasing the value of α
are shown in Figure 4. In the stereotyping process,
since the values for the dependent variable are updated
according to regression function 6.12, the regression
coefficients stay the roughly same. But as a result of
stereotyping, there will be a disparity in the regression
values as shown in Figure 4a. Looking at Figure 4b, we
observe that the disparities in regression values, which
were caused by stereotyping, are reduced by applying
the exemplar-based mitigation method.

(a) Linear decrease in Ŷ for
unprivileged group as α in-

creases

(b) The average regression val-

ues after applying mitigation

Figure 4: Changes in the regression values for the two
groups as stereotyping gets more aggressive
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6.3 Clustering. We now empirically study the ef-
fects of stereotyping under geometric interpretation on
K-means clustering. We create a synthetic dataset with
three features. The first feature is a uniform randomly
assigned binary sensitive attribute with values “privi-
leged” and “unprivileged”. We use two 2-dimensional
normal distributions N (0, 0.32) and N (1, 0.32) to as-
sign values to the second and third attributes; more
specifically, in each social group, the second and third
attributes for half the data are generated using one dis-
tribution and for the other half from the other. As for
stereotyping, we pick an arbitrary exemplar within the
unprivileged group and move the points representing the
remaining individuals in this group towards it according
to parameter 0 < α < 1, as illustrated in Figure 5.

(a) α = 0 (b) α = 0.3

(c) α = 0.6 (d) α = 0.9

Figure 5: Stereotyping under geometrical interpretation
for different values of α

In Figures 6a and 6b we compare the results of k-
means clusterings on stereotyped data and its mitigated
representations for different values of 0 ≤ α ≤ 1. We
see a strong effect of the stereotyped representation
for larger values of α and find that the mitigation
strategy removes that effect. This holds under both the
rand-index score [21] and the balance notion proposed
by [12]. In addition, although the solution proposed
by Chierichetti et al. [12] achieves a fair clustering,
it would increase the cost of clustering in presence
of stereotyping. This higher cost for fair clustering
compared to k-means and the effectiveness of mitigation
strategy are illustrated in Figures 6c and 6d respectively.

7 Discussion and Conclusion

In this paper, we formalized two notions of stereotyp-
ing and demonstrated how stereotyped representations

(a) By boosting α, Rand index

decreases.

(b) By boosting α, clustering

gets less balanced.

(c) Fair Clustering inflicts a

higher cost than K-means

(d) The two clustering impose

the same cost after mitigation.

Figure 6: Clustering in the presence of stereotyping.

lead to skewed outcomes when part of a machine learn-
ing pipeline. We also presented mitigation strategies for
these stereotype definitions and demonstrated via ex-
periments on synthetic data that these strategies could
largely remove the stereotype effects added to the data.

There are many aspects of stereotyped data that
our approach does not include. One might assume that
stereotyping (via exemplar or representativeness) might
act more weakly on some individuals (e.g., celebrities)
than others. Extensions to this framework that allow
the stereotyping effect to act on a subset of the unpriv-
ileged group or that allow variations in α based, e.g.,
on the distance from the exemplar would be interesting
to consider. We consider only a single exemplar, rather
than many. Additionally, while there has been work
validating the representativeness model of stereotyping
in human subjects [5], the specific geometric model of
stereotyping via exemplars that we consider here has not
been similarly validated. There are also other cognitive
models of stereotyping that we did not consider.
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Alvarado-Castro. Exact distributions for sensitivity
analysis in linear regression. Applied Mathematical
Sciences, 1(22):1083–1100, 2007.

[16] H. Edwards and A. Storkey. Censoring Representations
with an Adversary. arXiv:1511.05897 [cs, stat], Nov.
2015. arXiv: 1511.05897.

[17] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger,
and S. Venkatasubramanian. Certifying and removing
disparate impact. Proc. of KDD, pages 259–268, 2015.

[18] S. A. Friedler, C. Scheidegger, and S. Venkatasubrama-
nian. On the (im) possibility of fairness. arXiv preprint
arXiv:1609.07236, 2016.

[19] M. Hardt, E. Price, N. Srebro, et al. Equality of
opportunity in supervised learning. In Proc. NIPS,
pages 3315–3323, 2016.

[20] J. L. Hilton and W. Von Hippel. Stereotypes. Annual
review of psychology, 47(1):237–271, 1996.

[21] L. Hubert and P. Arabie. Comparing partitions. Jour-
nal of Classification, 2(1):193–218, Dec 1985.

[22] D. Kahneman and A. Tversky. Subjective probability:
A judgment of representativeness. Cognitive psychology,
3(3):430–454, 1972.

[23] D. Kahneman and A. Tversky. On the psychology of
prediction. Psychological review, 80(4):237, 1973.

[24] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma.
Fairness-aware classifier with prejudice remover regu-
larizer. Machine Learning and Knowledge Discovery in
Databases, pages 35–50, 2012.

[25] D. Katz and K. W. Braly. Verbal stereotypes and racial
prejudice. Journal of abnormal and social psychology,
28:280–290, 1933.

[26] D. Madras, E. Creager, T. Pitassi, and R. Zemel. Learn-
ing adversarially fair and transferable representations.
Technical report, arXiv preprint arXiv:1802.06309,
2018.

[27] M. Manis, T. E. Nelson, and J. Shedler. Stereotypes and
social judgment: Extremity, assimilation, and contrast.
Journal of Personality and Social Psychology, 55(1):28,
1988.

[28] M. Olfat and A. Aswani. Convex Formulations for Fair
Principal Component Analysis. arXiv:1802.03765 [cs,
math, stat], Feb. 2018. arXiv: 1802.03765.

[29] A. Romei and S. Ruggieri. A multidisciplinary survey
on discrimination analysis. The Knowledge Engineering
Review, pages 1–57, April 3 2013.

[30] S. Samadi, U. Tantipongpipat, J. H. Morgenstern,
M. Singh, and S. Vempala. The Price of Fair PCA:
One Extra dimension. In Proc. NeurIPS, pages 10999–
11010, 2018.

[31] M. Schmidt, C. Schwiegelshohn, and C. Sohler. Fair
coresets and streaming algorithms for fair k-means
clustering. arXiv preprint arXiv:1812.10854, 2018.

[32] E. R. Smith and M. A. Zarate. Exemplar-based model
of social judgment. Psychological review, 99(1):3, 1992.

[33] R. Speer. Conceptnet numberbatch 17.04: bet-
ter, less-stereotyped word vectors. http://bit.ly/

speer-concept, Apr 2017.
[34] D. Statt. The concise dictionary of psychology. Rout-

ledge, 2002.
[35] L. Sweeney. Discrimination in online ad delivery.

Queue, 11(3):10, 2013.
[36] A. Tversky and D. Kahneman. Judgment under uncer-

tainty: Heuristics and biases. Science, 185(4157):1124–
1131, 1974.
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